Albus Health is a medical technology startup that develops intelligent remote monitoring systems for in-home patients taking part in clinical trials. We are looking for a Signal processing research scientist to join us in our mission to improve lives of a billion people worldwide struggling with chronic respiratory conditions such as asthma and COPD.


Our potent combination of technical, clinical and commercial experts has allowed us to gain significant commercial traction in a relatively short duration. Our solution is now in use by some of the world’s largest pharma companies and we are preparing to scale up our operations domestically and overseas.

Albus have partnerships with top hospitals in the UK and some of Europe’s best clinicians. We have been running multiple carefully selected clinical studies and trials for several years, and as a result, acquired a wealth of data. This data will be instrumental to further advance our technology and to continue extracting valuable insights that would prevent emergencies and deaths for people struggling with chronic conditions.


Albus spun out from the Department of Engineering and Respiratory Medicine at Oxford University back in 2017 and have since then won multiple wards (including AI in Health and Care Award by UK’s Health Secretary and UK Research and Innovation). Albus is firmly backed with multi million pounds investment and we are now looking to expand our technical team in Oxford to develop new products and solutions that can operate at a global scale.



The signal processing research scientist position is an R&D hands on role with the opportunity to mentor some more junior colleagues in some cases. The role will require researching and assessing suitable sensors to capture relevant vital signs and environmental information. You will contribute to the optimum integration of these sensors into our electronics devices to ensure high quality data collection, help design device and signal diagnostics. You will be responsible for the development of suitable signal processing algorithms to perform feature extraction for downstream data processes, extract all relevant information from raw sensor data and overcoming as much as possible challenges and limitations. You will be asked to validate the output produced by your algorithm against reference data when available or through other means when not.

This role will be reporting directly to the CTO. You will also have access to a range of clinical and industry experts to gain insights, jointly steer research and identify novel solutions with high health impact and commercial scalability. After early adoption, Albus is now entering an exciting rapid growth phase that presents unique opportunities for career growth and progression, both technical and managerial.

One of the most important areas of ownership will be the sensory data captured (acoustic, motion, environmental and others). Given the volume of data and processing involved, software needs to be architected for efficiency and scale.



In the first week, we will help you get a good overview of the company, its origins, current state and where we are headed. You will learn about customer requirements, the technology and the team.

During the first month, you will understand the various technical challenges in more detail and familiarise yourself with our current code and algorithm, being able to make some small modifications of your own.

By the end of your first quarter you would have been able to undertake a sizeable work package/s addressing some of the new features in our roadmap.



  • Engage with our clinical and commercial teams to understand deeply the problems to solve
  • Research, assess and select suitable sensors to capture relevant vital signs and environmental data that can be incorporated into future versions of our electronic devices. Help with design of hardware electronics
  • Design and develop suitable signal processing algorithms to extract useful information and actionable insight
  • Design and implement experiments to test hypotheses, measure performance, identify sources of error and limitations in hardware and algorithms
  • Convert clinical needs into engineering problems. Solutions may involve combination of methods founded in electrical engineering, physics and computer science
  • Sift and analyse data from multiple angles, looking for trends that highlight opportunities
  • Formulate hypothesis for model improvement/optimisation, test/validate hypothesis and optimise input data and chosen model



  • MSc or PhD in electrical engineering, DSP, information engineering, biomedical engineering, physics or related fields
  • 2-5 years’ commercial experience working with digital signal processing, preferably with radio frequency (RF, Radar, microwave) sensors or digital biomarkers
  • Experience in extraction and validation of novel features and biomarkers Track record of high quality publications or inventions
  • Comfortable with literature review and implementation of state of the art published research
  • Experience with frequency content & spectrum analysis and solid understanding of the different sources of noise, signal degradation and techniques to extract meaning from raw noisy signals
  • Experience in developing analysis models for a range of computing capabilities, from microprocessors to multi-core GPUs
  • Experience working with multivariate and noisy signals
  • High proficiency in Matlab, Python and/or C++ programming. Experience writing production code



  • Experience working with a healthcare or medical technology start-up will be a distinct advantage, specially with remote symptom monitoring products
  • Knowledge or experience with time series analysis and machine learning applied to signal processing
  • Some experience in the process of electronic devices design would be useful, e.g. sensor selection, hardware signal processing options and embedded processing architecture
  • Productisation experience for solutions with a significant machine learning, signal processing and electrical engineering components, encompassing cloud and hardware sub-systems. In particular in a regulated industry such as healthcare



  • Competitive salary (based on experience)
  • 10% Employer pension plan contribution
  • You will be offered equity in the company through EMI scheme
  • Possibility of flexible working hours and remote working arrangements